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f bajz{BE(x q -  I=  a)(b-xq)j l /2}dxq.  (B.1) 

Strictly speaking, the parameter B depends on Xq; 
however, both the polarization factor C and I)~hl/2 2 c a n  
be assumed constant within the integration limits if 
condition (9) is satisfied. Assuming B=constant,  we 
calculate the integral in expression (B.1) following 
Kato's (1961b) method. Let J 2 ( 0  be in the form of a 
series: 

j 2 ( 0  = ~ (_  1) m ~ (2m-  1)!! ~2,,.  (B.2) 
,,=o (m!)2 (2m)!! 

Using decomposition (B.2) and having made a change 
of variables in (B.1): u=(xq-a) / (b -xq) ,  we have: 

I=B -1 ~ ( - 1 )  m -  
m----O 

1 (2m-1)!![B(b_a)]Zm+l 
(m!)2 (2m)!! 

f oo U m 
x +u)2,,+2du. (B.3) 

0 (1 

The integral in (B.3) is the tabulated (Dwight, 1961)" 

f~ urn (m!)2 (B.4) 
(1 +u) 2"+ 2 d u -  (2m+ 1)!" 

Substituting (B.4) into (B.3) we have the expression 

which can be written: 

I =  B -1  ~¢o(Q)dQ • (B.5) 

Here 

B ( b -  a)=(KClzhlt/cos O) (1 - t2/D2) - a/2 
= 2A(1 - tZ/D~)- 1/2 (B.6) 

where A is the parameter of the dynamical theory of 
X-ray diffraction introduced by Zachariasen (1945). 
Since we assumed condition (9) to be satisfied, the 
upper limit of integration in (B.5) is equal to 2A, 
B~--KCIzhl/2 sin 0, and (B.5) corresponds to Waller's 
integral. 
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When a molecular fragment has a known orientation, it is possible test rapidly all possible positions 
in the unit cell for this fragment by calculating structure factors at each position for a moderately large 
number of reflexions. A program, LOCOFOROM, has been written for this purpose and application to 
two structures is discussed. 

Introduction 

The location of a known molecular fragment in a 
crystal often takes place in two distinct stages. The 
first, and usually the easiest, stage is the determination 
of the orientation of the fragment. Indeed, it has long 
been recognized that a consistent but incorrect set of 
phases from a statistical model often yields an E map 

* Research performed at Oak Ridge National Laboratory and 
sponsored by the Energy Research and Development under con- 
tract with Union Carbide Corporation. 

with recognizable molecular fragments of correct 
orientation but wrong position. 

The orientation of a fragment may often be un- 
ambiguously obtained from the Patterson function 
(Nordman, 1970) or from a comparison of a calculated 
transform for a fragment with the observed reflexions 
(Tollin & Cochran, 1964). This information is some- 
times used to assist statistical phase-determination 
methods (Thiessen & Busing, 1974). 

The second stage is the determination of the posi- 
tions in the crystal for these fragments. However, dif- 
ficulties are often encountered at this stage and the 
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point of this paper is to show that it is not impractical 
to compare observed and calculated values of the struc- 
ture factor for a systematic testing of possible sites 
for a fragment on a grid of 0.2 to 0"3 A sampling fre- 
quency. Practical experience with small molecules sug- 
gests that this fine a grid is essential. 

The concept of the method described in this paper 
is mentioned but not extensively developed by Stout & 
Jensen (1968). Apart from certain space-group-specific 
applications using projection data (Taylor & Morley, 
1959; Bhuiya & Stanley, 1964), little effort seems to 
have been made to develop the method as a general 
procedure with three-dimensional diffraction data for 
any space group. This is understandable as few suc- 
cessful solutions could be expected from projection 
data because of an insufficient number of high-in- 
tensity data and the overlap of atoms in projection 
(some overlapping atoms possibly being omitted from 
a trial fragment). Our results also show that the use 
of too coarse a grid (say 0.4 to 0"5 ~) for three-di- 
mensional data would also probably fail to give a 
solution. Points 0.2 to 0-3 A away from a correct solu- 
tion show no better statistics than a great many other 
points. However, as shown in this paper, the computing 
cost of doing the job properly is not great. 

An inherent advantage in the approach described 
in this paper compared with the use of a translation 
function (Karle, 1972) is that there is no restriction 
on the choice of function of observed and calculated 
structure factor amplitudes to determine best the posi- 
tion of a fragment. Also, more than one such function 
can be simultaneously tested. 

Theory 

If (0m, dm) is a symmetry operation where (0,,,,d,~)r= 
0mr+d,,, then the structure factor may be described 
as F(S)-- ~ Fro(S) where 

m 

Fro(S) =exp (27zidm. S) ~ a,f~(S)~,(0~ ~S) 
n 

where a, is the occupancy factor, f,(S) is the scattering 
factor and ~,(S) is the Fourier transform of the prob- 
ability density function for the position of the nth 
atom in the asymmetric unit. If all atoms in the asym- 
metric unit are moved by a fixed amount from posi- 
tions r, to positions r, + ro then Fro(S) is transformed to 
exp (2niro. O~lS)Fm(S). We thus see that it is not 
necessary to evaluate F,,(S) for every point ro that we 
wish to test, but rather simply to evaluate F,,(S) for 
the point ro = O. 

If ro is only allowed to have certain specific values 
(nl/N)al+(n2/N)az+(na/N)a 3 where the ai are axial 
lengths, N is a fixed integer and nl, n2, n3 are integers 
which are stepped to sample three-dimensional space, 
then the allowed values of exp (2~ziro. 0,7, 1S) can be 
obtained by a simple table look up with no need for 
interpolation. Initial evaluation of ai. 0~, xS for a re- 
flexion whose scattering vector is S allows simple 

modulo arithmetic logic to ascertain which elements 
in pre-evaluated cosine and sine tables to look up for 
any particular grid point. Points are tested one layer 
at a time. For each layer, data for one reflexion is 
read, and Fc evaluated for each grid point before the 
next reflexion is read. 

The maximum volume that needs to be searched 
is not the volume of one asymmetric unit. Rather it is 
the volume defined by the choice of origin for the 
space group (Hirshfeld, 1968), e.g. ~ of the unit cell 
for P1, ¼ of the unit cell for P41212, ¼ of the section 
y = 0 for P2. 

Discussion 

A program, LOCOFOROM, to locate the origin for 
an oriented molecule has been written at Oak Ridge 
National Laboratory and incorporates the above ideas. 
The first test of the program was with data for imida- 
zole-4-acrylic acid dihydrate (C6HloO4N2) which 
crystallizes in space group P212121 [a=9.624 (1), b =  
12.881 (1), c=6"714(1) A at 22°C, Z = 4 ] .  From an 
incorrect phase set approximate relative coordinates 
for the atoms of imidazole-4-acrylic acid could be 
found from an E map. However, the molecule was in 
the wrong position and the relative positions of the 
two water molecules of crystallization could not be 
found. The 271 reflexions of highest ]FI were used and 
the volume searched was between fractional coordi- 
nates 0-½, 0-J-, ~ in steps of 3/120, 2/120, and 4/120 
in x, y, z respectively. 

Values of R1 = E  [AF[/T. Fo, R2 =E (AF)2/~ Fo E, and 
R a = E  ]Fo[E]FclE/Z [Fo 4] were plotted and calculation 
took less than 3 min on an IBM 360/91. The correct 
position should presumably correspond to minimum 
values of R1, R 2 and a maximum value of R3. Mo- 
lecular coordinates were taken from the incorrectly 
phased E map and no attempt was made to idealize 
the geometry of the ten-nonhydrogen-atom fragment. 
The incorrect origin (ro=0) gave R~=0-45, R2= 
0"28, Ra = 1-35. The scale and a simple overall isotropic 
temperature parameter were obtained from a Wilson 
plot and a constrained least-squares refinement pro- 
gram RAELS was used to provide the structure-factor 
information compatible with the program LOCO- 
FOROM. 

A correct structure-factor refinement (Hawkinson, 
1977) was obtained from the point ro=(15/120, 0/120, 
24/120) which gave values of R1=0.42, R2=0-25, 
R3= 1.36. Values of R1 and R 2 for this point were 
the best values for any of the tested points, though the 
best value of R3 was 1-43. R3 proved to be an imprecise 
function for testing purposes despite the fact that it 
is commonly used for determining fragment orienta- 
tion. The second best value of R 1 +R2 was for the 
point ro=(15/120, 0/120, 0/120) with R~ =0.43, R2= 
0.27, R3= 1.38. A correct refinement could also be 
obtained from this point. The point ro--0 corresponds 
to an almost planar molecule lying perpendicular to 
c at z=0"65. The two best solutions then have the 
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same x,y  coordinates for atoms but with z~-0"85 or 
0.65. As a consequence, the transformation x ,y ,z  
x , y , z - 0 . 2  closely approximates the transformation 
x ,y , z  ~ x,y, 1.5 - z  (z~-0.85) which is a transformation 
that changes the correct structure into its enantio- 
morph. 

The second test of the program was with the 15- 
nonhydrogen-atom compound norcubebanone 
C14H200 [a=8"480 (2), b=23.502 (5), c=6.314 (1) ,~ 
at 22°C, space group P212121, Z = 4 ] .  An eight-atom 
fragment (a half-chair cyclohexane ring with two 
attached C atoms) was used. The geometry was 
idealized from preconceptions [not the known struc- 
ture, (Thiessen, 1977)] and the orientation of this frag- 
ment was found with the program O R T R A N  (Thiessen 
& Busing, 1974). The 177 reflexions with E >  1.5 were 
used. The volume searched was between fractional 
coordinates 0--~21, 0--~, 0-~ in steps of 3/100, 1/100, and 
4/100 in x, y, z respectively. The correct position of 
the fragment again corresponded to the best value of 
R1, namely R~ =0.47. The value of R2 was 0.257 com- 
pared with a best value of 0-250 and R3 was 0.432 
compared with a best value of 0.440. The use of R3 
as a criterion of correctness was again poor; for 
example, the correct position corresponded to the 
third best value of R1 + R 2  - R 3 .  The value of R1 for 
the position with the best value of R1 + R E - - R 3  was 
R1 = 0"49, while for the second best point R~ was 0.48. 
Only these three points stood out as possible solu- 
tions. If values of RI + R2 were considered, the correct 
solution was again the best point (value 0.73 as against 
0.74 and 0"75). The time for the calculation of the map 
was just over 2 min on the IBM 360/91. 

Obviously, further thought can be given as to what 
data to select for the calculation and what functions 
of the structure factor are best able to distinguish a 
correct solution. However, plotting a number of func- 
tions does not add greatly to the computing time. Also, 
a finer search about promising points can be under- 
taken with more data. 

To locate simultaneously two fragments in an asym- 
metric unit, a six-dimensional space would have to 

be searched. This makes the proposition prohibitively 
expensive. However, it should be pointed out that 
packing arguments could be used to greatly reduce 
the volume that needs to be searched. Of course, if 
one fragment is known in both orientation and posi- 
tion, a second fragment can be located with the ideas 
expounded in this paper by simply including a com- 
ponent of the structure factor which is invariant for 
various sampling points ro. Two fragments in the 
triclinic space group P1 is of course a case that is 
always amenable to this approach. The first fragment 
can always be fixed at the origin of the unit cell. 

I wish to acknowledge W. E. Thiessen of Oak Ridge 
National Laboratory and S. W. Hawkinson of the 
University of Tennessee for supplying intensity data, 
and for taking an active interest in this project, even 
though they had each already solved the above 
troublesome structures by other means. 
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